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Abstract
Microseism noise, generated by wave-wave interaction of ocean surface gravity waves and peak-
ing near 0.25Hz, 1s the largest amplitude, continuous (acceleration) vibration on earth in the seismic

IIlI. The Data

Traditionally, tropical cyclones, like AERE, are a strong source of microseism energy. Spec-

IV. The Modeling

TDFD modeling has been carried out to confirm the hypothesis that double-frequency microseisms excited over the deep ocean

II. The OBSAPS Experiment
The OBSAPS cruise sailed Kaohsiung to Kaohsiung, April 29 to May 16, 2011. A fifteen element

band from 0.0001 to 10Hz. Although microseisms have been studied extensively over the past sev- OBSAPS - Distributed Vertical Line Array (O-DVLA) with hydrophone modules from 12 to 852m trf)grams of the hydrophone modu!e data (eg Figure 8) and OBS vertical COII?pOIlGIE[t data (eg propagate well in the deep ocean but do not reaQily propagate onto continents (Bromirski et al., 2005.; Brom.irski etal., 2013; Lat}.lam
enty years, significant issues remain regarding their excitation and propagation. In a recent paper above the seafloor was deployed 1n the Philippine Sea near 21degN, 126degE (Figure 3). Four Figure 9) show examples of both dlstapt (on JD 124) and local (JD127-132) microseism sourc- and Sqtton, 1966). There are three aspects .to this. Fnjst, shallow pressure sources, like wave-wave interaction, put more energy into
Bromirski et al (JGR, 2013) point out that there is an important distinction between microseisms short-period Ocean Bottom Seismometers (OBSs) and two long-period OBSs were deployed at es. The hydrqphoqe modules were d681gne.d for use above 10Hz but.they s.t111 resolve the d‘01.1ble acoustic modeg and acous.tl.c psel.ldq-Raylmgh waves in deep we.tt.er and than 1n shallow water (Figure 13). Second? some.thmg about
generate din deep and shallow water Most microseisms observed on continents are generate din 2km range from the O-DVLA (Figures 4 & 5). All of the OBSs had three-component inertial sen- frequency .IIIICI'OS.GISIIIS (0.12 to I.OHZ, Flgure 10). The long .penod selsmomet?rs (Trﬂ‘hum the ocean—contn.lent tran.s%tmn (dIStlnCt. from ocean-1sland trans1t101'1s) S.tI'OIlgly attenuates deép—water generated.mlcroselsms so that
shallow water near coastlines. Microseisms senerate din deep water are observed on seafloor sen- sors and an acoustic pressure sensor. Three of the short period OBSs also had an extema], autono- 2408) pI’OVIdG Vall.d data dOWIl to 0.02Hz and under quiet COIldltl(‘)IlS resolve the primary micro- they do Il.Ot readlly transition onto COIltlI}GIltS (SCG the test exgmples n FlgUI’GS 14 and 15) ThlI’d, there 1s somethmg abogt deep water
sors but do not transition readily to continents. The Ocean Bottom Seismometer Augmentation to mously recording hydrophone module 1dentical to the hydrophone modules on the O-DVLA. Data Se1sms at 0.06Hz 1n booth vertical and horizontal components (Flgure. 11). The.O-DVLA pro- prOpagat}On per se, for example scatter.lng frpm bathymetric roughness, that attenuates deep-water generated microseisms, but not
the Philippine Sea (OBSAPS) Experiment has provided a unique opportunity to study the excitation from nearby c.or}tin.er.ltal and i§land Globgl S§ismig Netwqu (GSN) stations (Figure 6) can be use.d vides the first opportunity to obse.rve the depth dependence of microseism noise in the ocean di- necessarlly shallow-water generated m.lcro.se1sms. o |
and propagation of microseism noise (from 0.05 to 1.0Hz) in the oceans by combining ocean bottom to study the similarities and differences in microseisms with the seafloor station. The data acquisi- rectly above an array ot OBSs (Figure 12). Figure 13 derponstrates th.e dramatic difterence ot excitation and propagation between shallow (100m) and deep (5,000) water.
seismometer observations with colocated and simultaneous observations of the acoustic field in the tion interval included about a week of calm conditions with wind speeds of less than 5 to 10knots For th§ l.OO m th¥ck ocean (Figure 13, top), the water 1s sufﬁmeptly thin w1th respect to any wavelengths at the source frequen01§s
ocean. The depth dependence of the acoustic field in the ocean can be used to distinguish between (Figure 7). Following this, Tropical Storm AERE grew to the Southeast of the site and eventually that this 1s §ssent1ally a free'—surface problem. For the 5,000m .thlck ocean (Figure 13, bottom) most of the energy goes 1qto acoustic
tracked almost directly over the site (Figure 3) with observed wind speeds of almost 50knots. and acoustic pseudo-Rayleigh modes (pRg0 and pRgl, see Figure 1) that travel at the water phase speed. Relatively little energy

Rayleigh waves, acoustic and elastic pseudo-Rayleigh waves, and ocean acoustic modes as propaga-

travels at the free surface Rayleigh wave speed (FSRW).
tion mechanisms for microseism energy. (OBSAPS experiment was funded by ONR.) M u yleigh wave speed ( )

Two test examples are shown to demonstrate 2-D TDFD results for ocean-continent transitions. Figure 14 shows a calculation for
a point, compressional source 1n shallow (100m) water propagating onto land. Elastic pseudo-Rayleigh waves are excited in shallow
water and these transition easily into free-surface Rayleigh waves (FSRW) on land. Figure 15 shows a similar set of plots for
deep-water excitation. The time series for deep-water receivers (left side of the upper left panel) show the same acoustic pseu-
do-Rayleigh waves as 1n Figure 13d. These reflect strongly from the ocean-shelf boundary sending similar acoustic pseudo-Rayleigh
waves back 1nto deep water. A small amount of each component of acoustic pRg does convert to FSRW on land.
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OBSAPS site during the passage of Tropical Storm AERE on JD
128-131, 2011.

Although the fluid halfspace in a is unrealistic, comparison of these cases
shows the effect of shear. Source and receivers are 0.050 km above the inter-

face. These plots were computed using a seismo-acoustic fast-field algo-
rithm (Schmidt, 1988). [Figure from Bromirski et al (2013).]

RMS levels on the hydrophone modules on the three OBSs are also shown
(+).




Abstract

Microseism noise, generated by wave-wave interaction of ocean surface gravity waves and peak-
ing near 0.25Hz, 1s the largest amplitude, continuous (acceleration) vibration on earth in the seismic
band from 0.0001 to 10Hz. Although microseisms have been studied extensively over the past sev-
enty years, significant issues remain regarding their excitation and propagation. In a recent paper
Bromirski et al (JGR, 2013) point out that there 1s an important distinction between microseisms
generated 1n deep and shallow water. Most microseisms observed on continents are generated in
shallow water near coastlines. Microseisms generated in deep water are observed on seafloor sen-
sors but do not transition readily to continents. The Ocean Bottom Seismometer Augmentation to
the Philippine Sea (OBSAPS) Experiment has provided a unique opportunity to study the excitation
and propagation of microseism noise (from 0.05 to 1.0Hz) in the oceans by combining ocean bottom
seismometer observations with co-located and simultaneous observations of the acoustic field in the
ocean. The depth dependence of the acoustic field 1n the ocean can be used to distinguish between
Rayleigh waves, acoustic and elastic pseudo-Rayleigh waves, and ocean acoustic modes as propaga-
tion mechanisms for microseism energy. (OBSAPS experiment was funded by ONR.)

I. Background - Pseudo-Rayleigh Waves (pRg)

In marine seismology the physics of wave propagation for the double frequency microseism
band (0.1-0.5Hz) and typical ocean depths (100-6000m) spans the transition between solid earth
seismology and ocean acoustics. At microseism frequencies, the water wavelengths are much
longer than the thickness of soft sediment layers on the seafloor, the seafloor sediments can be 1g-
nored, and the bottom can be considered to consist of "hard rock", with a shear speed greater than
the sound speed 1n the water. For laterally homogeneous models, the different phases generated by
ocean surface gravity waves were reviewed by Ardhuin and Herbers (2012).

Many papers on microseism generation assume that, because storms at sea excite “Rayleigh
waves” and because land arrays observe “Rayleigh waves”, then Rayleigh waves must easily prop-
agate from the deep ocean onto land. Bromirski et al (2013) point out that storms at sea excite
“pseudo-Rayleigh waves™, which are significantly different from “Rayleigh waves”, through the
microseism band (0.1-0.5Hz) (Figure 1). For example, at frequencies above 0.2Hz and a water
depth of 5000m “pseudo-Rayleigh waves™ have considerable energy in the water column and prop-
agate at water sound speeds (see Figure 2 for the frequency-depth trade-off of phase speed).

Pseudo-Rayleigh waves (below a fluid layer) do become indistinguishable from Rayleigh waves
(on land) at low frequencies (below about 0.1Hz) where the thickness of the fluid layer becomes
small compared to an acoustic wavelength. But for microseism studies the band of interest,
0.1-0.5Hz, spans the transition from free surface Rayleigh waves to propagating acoustic modes,
acoustic pseudo-Rayleigh waves and direct water waves 1n the ocean as the ocean thickens with re-
spect to frequency.
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Figure 2: Relative wave field amplitude is shown as a function of phase
speed and water depth for four frequencies spanning the microseism band.
Spectral amplitudes (in dB) of the frequency-wave number field (as in Fig-
ures 13b and 13d below) are averaged over a 0.2 Hz band about the nominal

) = - = W LU — = frequency, converted to phase speed and normalized to the peak amplitude

|

03 04 05 06 07 o038 on the trace. Acoustic sound speed (1520 m/s) and FSRW speed (2518 m/s)
Slowness (s/km) are indicated by horizontal dashed lines. The spectral peak variation shows
that, for frequencies in the microseism band, the dominant energy transitions
from FSRW speeds to acoustic speeds as water depth increases. Phase-speed
resolution, indicated by the width of the spectral peak, improves with
increasing frequency. pRg mode 1 (see Figure 1) becomes evident between
FSRW and acoustic phase speeds at deeper water depths as frequency
increases. [Figure from Bromirski et al].
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Figure 1: The magnitude of the wave fields in frequency-slowness space for
a fluid layer (5 km thick with a sound speed of 1.520 km/s and a density of
1 kg/m”3) over (a) a fluid half-space (acoustic, zero shear modulus, with
sound speed of 4.730 km/s and density of 3 kg/m”3), and (b) a solid
half-space (elastic, compressional, and shear speeds of 4.730 and 2.800
km/s, respectively, free surface Rayleigh wave (FSRW) speed of 2.565 km/s,
and a density of 3 kg/m”3). The FSRW slowness (0.39 s/km, white line) is
the lower slowness bound for pseudo- Rayleigh wave (pRg) modes. Approx-
imate boundaries where fundamental pRg mode 0 exhibits predominantly
elastic or acoustic behavior are indicated by vertical black lines, with a tran-
sition region between. Acoustic modes 1, 2, and 3 are common to a and b.
Although the fluid halfspace in a is unrealistic, comparison of these cases
shows the effect of shear. Source and receivers are 0.050 km above the inter-

face. These plots were computed using a seismo-acoustic fast-field algo-
rithm (Schmidt, 1988). [Figure from Bromirski et al (2013).]



